Getting Started
This guide will help you set up Hugin and create your first agent.
Installation
1. Setup an LLM Provider
You can use cloud APIs or local models:
Cloud APIs (Anthropic or OpenAI):
export ANTHROPIC_API_KEY="your-key"
# or
export OPENAI_API_KEY="your-key"
Local with Ollama:
# Install Ollama from https://ollama.com/download
ollama pull llama3.2
2. Install Hugin
pip install gimle-hugin
Or with uv:
uv add gimle-hugin
3. Create Your First Agent
The quickest way to get started is with the agent builder:
hugin create
This interactive wizard will guide you through creating a simple agent.
Manual Setup
If you prefer to set things up manually, create a directory structure:
my_agent/
├── configs/
│ └── my_config.yaml
├── tasks/
│ └── my_task.yaml
└── templates/
└── my_system.yaml
Configuration
configs/my_config.yaml:
name: my_agent
description: My first agent
system_template: my_system
llm_model: haiku-latest
tools:
- builtins.finish:finish
Task Definition
tasks/my_task.yaml:
name: my_task
description: My first task
prompt: "Hello! Please introduce yourself and explain what you can do."
System Template
templates/my_system.yaml:
name: my_system
template: |
You are a helpful assistant.
Complete the task and use the finish tool when done.
Run the Agent
hugin run --task my_task --task-path my_agent
Adding Custom Tools
Create a tool with a Python implementation and YAML definition:
tools/greet.py:
def greet(stack, name: str) -> str:
"""Greet someone by name."""
return f"Hello, {name}!"
tools/greet.yaml:
name: greet
description: Greet someone by name
parameters:
- name: name
type: string
description: The name to greet
required: true
implementation: greet:greet
Add to your config:
tools:
- builtins.finish:finish
- greet:greet
Monitoring Your Agent
Watch your agent's execution in real-time:
# Terminal 1: Run agent with storage
hugin run --task my_task --task-path my_agent --storage-path ./data/my_agent
# Terminal 2: Start the monitor
hugin monitor --storage-path ./data/my_agent
The monitor opens in your browser showing the agent's interaction flow, tool calls, and decision tree.
Next Steps
- Core Concepts - Understand agents, stacks, and interactions
- Examples - Learn from working examples
- API Reference - Detailed API documentation